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* Our construction of supersymmetric AdS flux vacuum with small c.c. Is a
step In this direction. wenies kim veatiser, vorie. Az 1. 1)

 The tools we have developed allow for unprecedented checks of control.

* | will tllustrate our capabilities by presenting how we checked for the
convergence of worldsheet instanton corrections in our AdS construction.

« Our improvements in computing Gopakumar-Vafa invariants allow for more complex
Takeaways; constructions and robust checks of control (among many other things!).

» These tools will be integrated into our CYTools package, which will be released soon.
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Work in the context of type I1B compactified on orientifold of CY ;, and follow KKLT-like procedure.

2T
W=Wga,x(z1)+ E Ap(z,7) exp (—C—TD)
D
D

We start by engineering W, := (|Wﬂux|) <« 1. We do this by picking fluxes that make the

perturbative part vanish, so that only contribution are from 1A worldsheet instantons and leading
terms form a racetrack. emirtas, kim, Mealister, Moritz *19]

Waux(T) = c(e2™P1T 4 A@2TP2T) 4 ...

In our flagship example we have

gs =~ 0.011
W ( ) x —7 2T 55 29 + 252 2T 55 28 + 0( 2miT: 14136 2 29
flux? € € € W, =~ 0.526 X =5) 6.46 x 10762

Numbers in red are Gopakumar-Vafa (GV) invariants.
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We further require at least h''1 appropriately rigid prime toric divisors so that <A, (z,7) = const.

Finally, we need to find a point in Kahler moduli space where Dp. W = 0.

This is a hard task since h%* > 1 and
there are exponentially many phases.

[Demirtas, McAllister, A.R.-T., '20]
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Lightning-Fast Review of the Construction

Thus far we have a superpotential of the form P11

21 21
W=W0+2cle(z,T)eXp(——TD> Wy + Zcﬂ exp(——T)
D

We further require at least h''1 appropriately rigid prime toric divisors so that <A, (z,7) = const.

Finally, we need to find a point in Kahler moduli space where Dp. W = 0.

Et voilal
This is a hard task since h*! > 1 and We have SUSY AdS with
there are exponentially many phases. small cosmological
constant and all moduli
stabilized.
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Due to constant 4; and g, << 1 we believe the superpotential is under very good control.

The main corrections that could spoil the construction are from worldsheet instanton corrections to

the Kéhler potential.

K = —2log(gs2V(T;, T))

We must make sure that the vacuum is in the radius of
convergence, and that we can find a new point in Kahler
moduli space where D+ W = 0 with the corrected volumes.
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th IS this a difficult check?

There are two reasons why checking the convergence of the instanton expansion is difficult:

1. We need to compute GV invariants for CYs with a large number of moduli.
Mathematica package “Instanton” can only handle At! < 10. Kiemm, kreuzer. 04

Our examples have 51 < h! < 214, so we needed to develop new computational tools.

2. We need to compute GV invariants deep into sufficiently many rays of the Mori cone to test for
convergence.

With the standard procedure it is impossibly difficult to look deep into rays, so we needed
to come up with some tricks.
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h'1 = 2, where the Instanton package can
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As a point of comparison, Katz and
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We were able to compute the GV invariants of
142,596,918 curves, and found 532 non-zero ones.

3,11,111,1111-3111111127,111111311111111111,-61,1,-192,
1,-2,1695,1,1,3,1,1,1,1,27,-6,1, -2, 1,-17064, -2,1,1,1,1,1,1,1,1,1, 1,5, -2, 188454, -2, -32,1,

11 : 1,1,1,286, 2228160, 2, 1, 1,1, 1, 1,-192,5,-2,5,1,-32, 1, 1, 1, -3038, 27748899, 1, 1, 1,27, 1, -2, -2, 5,
(h~* = 101). Here are their results: 1,-2,1,1,1,5,1,1,-32, 286, 1,5, -32, -6, -2, 1, 35870, 1, -360012150, 1, 1, 1, 1, 1, 1695, 1,7, 1, 1, -2, 1,
2,1,-2,1, -2, -2, 4827935937, 3038, -2, 286, 1,5, 1, -454880, 5, 1, -3038, 1, 6073311, 1, 1, 35870, 5, 1, 1

: : : 6537713520, -110, -192, 1, 938273463465,

Matching the appropriate curve classes we reproduce their results! 302270, -454880, 35870, 1, 1, 1, 1, 286, 1

Net2y

5216, -400, 6073311, 1, 35, 1, 1, 1, 286, 1,

= 300

— 440 ng;?toric
0,toric

= 15 nQE—I—’y

= —60 0,toric
2042~

= 155

[Katz, Morrison, *22]

—30
150
—500

-2,286,1,1,4,1, 188454, 1, 7, -32, -32, 1695, -3038, -4, -2, 5,1, 1, 1, 1, 392084, 1, 286, 1, 1, -4, 286, -4,
-3038, 7, 1, 1, 1, 1, -3038, -84302270, -4, 7, 1, 6073311, 1, -10, -400, 5, 1, 27, -17687468032, 1, 1, -32, 1,
197287568723655, 5187, 5187, 35870, 9, -4, -110, -4, 35, -2927443754647296, -84302270, -4, 1, -72384, 1,
264593385735, 4, 1206291308, 35870, -110, -6196718, -2, 35870, 35, -3038, 1, 35870, -2, 64, -2228160,
-72384, 35, -454880, -32, -454880, 1, 1, 1, -6, 1059649, 1, 1, -4, 286, 1206291308, 1, 1, -572, 1, 1651,
-3038, 5, -4, 35, 7, 1, 1, -2, -400, -2, -2, -288, -4, 1, 35, 35, -2, 1, 99337500, -454880, 1, -2,
-4024945917314, 44000514720961743, -17687468032, 135, -110, 1, -400, -2, 1651, -2, -3038, -17064,
6073311, 6073311, 1, 1, -4, 286, 6073311, 6076, -32, 1059649, 35, -1611792000, 5, 62101640836955, -110,
264593385735, 1, -400, -2, 1, 1, -668908727886779298, 35870, 1, -16043632, -4, 286, 1, 1, 1, -4, -400, 35,
-25216, 1, 1, 1, 6885, 5187, -454880, -400, -32, 5, 1, -17687468032, 27748899, 1, 1, 1, 1, -2, -2, 1, 5, -4, 5,
1, 4, -6,7, 7, -146718, 1, 5187, 1, 3, 5187, 1, 1, 1, 286, 8, 35, 35, 135, -2, 1, -4, -6, -2, -84302270, -4,
-84302270, -84302270, -4, -4024945917314, 10272581487272296287, -969921269646560, 264593385735,
264214453509, 35, -2592, 249045000, -16043632, -2, -71740, 1, 1, 35, -3038, 1651, -72384, 35870, 392084,
35, -4, 5187, -2, -400, 1059649, -25216, 47775, 9, -6, 2953818, 35, 135, 15309505269479942, 1206291308,
-6196718, 6073311, -72384, -400, -436925483986, 909760, 249045000, 1206291308, 1206291308,

PP 4,7,62101640836955, -72384, 1,

We can go all the way up to h** = 491, and use 100+ million curve classes. |4 -2592 -2 -400, 1, 1., -2, -2,
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th IS this a difficult check?

There are two reasons why checking the convergence of the instanton expansion is difficult:

Q/ 1. We need to compute GV invariants for CYs with a large number of moduli.
Mathematica package “Instanton” can only handle At! < 10. Kiemm, kreuzer. 04

Our examples have 51 < h! < 214, so we needed to develop new computational tools.

2. We need to compute GV invariants deep into sufficiently many rays of the Mori cone to test for
convergence.

With the standard procedure it is impossibly difficult to look deep into rays, so we needed
to come up with some tricks.
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about effective curves in its “past light cone”.

Blue region is the Mori cone.

Red region is the past light cone.

Only curves in the intersection are required for the computation.
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Trick #1 to check for convergence

To compute the GV invariant of a curve one only needs to use information
about effective curves in its “past light cone”.

Blue region is the Mori cone.

Red region is the past light cone.

Only curves in the intersection are required for the computation.

A special case is when a curve lies on a face of the Mori cone, since the
dimensionality of the problem is reduced.

Computing GV invariants on a d-dimensional face is about as difficult as
computing GV invariants for a model with d moduli.




GV Invariants are structured




GV Invariants are structured

10 _ . :

m Cone of potent curves There is a cone of potent rays, i.e., a cone where

" Nonwers o it rays have infinitely many non-zero GV invariants.
8 This cone 1s surrounded by a “bouquet” of nilpotent

rays, i.e., rays with only finitely many non-zero GV
6- invariants.
4.
2.
0-
0 2 4 6 8 10
X
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To check for convergence we only need to inspect
potent raysS. (we still use nilpotent rays when finding the vacua)



GV Invariants are structured

10

Mori cone
Cone of potent curves

s FEffective curves
« Nonzero GV invariant

10

There is a cone of potent rays, i.e., a cone where
rays have infinitely many non-zero GV invariants.

This cone 1s surrounded by a “bouquet” of nilpotent
rays, i.e., rays with only finitely many non-zero GV
Invariants.

To check for convergence we only need to inspect
potent raysS. (we still use nilpotent rays when finding the vacua)

How do we do this?
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Trick #2 to check for convergence

Performing flops corresponds to flipping extremal nilpotent rays of the Mori cone.

We can perform flops to go to phases where different parts of the cone of potent rays are in the
boundary of the Mori cone.

Then we use the previous trick to compute GV invariants along those faces!



th IS this a difficult check?

There are two reasons why checking the convergence of the instanton expansion is difficult:

Q/ 1. We need to compute GV invariants for CYs with a large number of moduli.
Mathematica package “Instanton” can only handle At! < 10. Kiemm, kreuzer. 04

Our examples have 51 < h! < 214, so we needed to develop new computational tools.

% 2. We need to compute GV invariants deep into sufficiently many rays of the Mori cone to test for
convergence.

With the standard procedure it is impossibly difficult to look deep into rays, so we needed
to come up with some tricks.
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Do the sums converge?

Yes! In our flagship example we used a sample of 1728 potent rays along which we computed
" the GV invariants of the first 10 curve classes.

Here we plot the scaling of the contributions along the potent rays. £, = Gvngle-z’mﬁf
O
= 200+
~1000
| 150
~ —200 -
SV c
E § 100-

—300

—400 304

\ A\

N \\\, \ N \ 0
6 7 8 9 10 -50 —-40 -30 -20
n dlog(§,)/dn

_ NN
2005374 5

-10 0
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Do the sums converge?
Yes!

In our flagship example we used a sample of 1728 potent rays along which we computed
the GV invariants of the first 10 curve classes.

Here we plot the scaling of the contributions along the potent rays.

— —21ng-t

200
—1000%
| 150+
~ —200 o The contributions decay
SV - .
B 3100 exponentially, so the sum
— =300 converges!
—400 \ _ 207
0057372 5 6 7 8 9 10 (150 —-40 =30 =20 -10 0
n dlog(§,)/dn
Andres Rios-Tascon
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Y
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When can you get your hands on our computational tools?

Y

2019

* Any CY, from the
KS database
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When can you get your hands on our computational tools?

[Demirtas, McAllister, A.R.-T., to appear]

2019 Now

 Singular CYs

 Any CY, fromthe ||* Nef-partitions, Toric

KS database CICYs
e Fourfolds (and n-folds)

« Many improvements
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When can you get your hands on our computational tools?

[Demirtas, McAllister, A.R.-T., to appear]

[Works in progress with Gendler, Kim, Kulkarni, Moritz, Nally, Stillman]

2019 Now Soon
+ Singular CYs G\/_V/G_\/ln\_/arlants
Any CY, from th Nef-partitions, Toric Orientifolding
* Any CY; fromthe ||° . , Modular CY
KS database CICYs Odl; ar C 7
* Fourfolds (and n-folds) ch?Ig:[O%Ve%rab €
» Many improvements Vacua finding
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When can you get your hands on our computational tools?

[Demirtas, McAllister, A.R.-T., to appear] [Works in progress with Gendler, Kim, Kulkarni, Moritz, Nally, Stillman]

2019 Now Soon Future directions

+ Singular CYs * GW/GV invariants

.. .||+ Orientifolding * F-Theory
« Any CY, from the * Nef-partitions, Toric . dul v _ _
KS database CICYs Modular CY's » Heterotic string
* Fourfolds (and n-folds) ’ yé)lgig%ve%rable e VEX po'ytopes

* Many improvements | f . \/cua finding
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When can you get your hands on our computational tools?

[Demirtas, McAllister, A.R.-T., to appear]

If any of this sounds interesting
to you then let’s talk!

[Works in progress with Gendler, Kim, Kulkarni, Moritz, Nally, Stillman]

« Many improvements

Vacua finding

2019 Now Soon Future directions
. Singular CYs G\/_V/G_\/ln\_/arlants
" : Orientifolding * F-Theory
« Any CY, from the * Nef-partitions, Toric dul _ _
KS database CICYs Modular CY's « Heterotic string
* Fourfolds @nd n-folds) Blcﬂgf[g%\grable « VEX polytopes
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Conclusions

» We developed tools that allow for more complex constructions and
robust checks of control.

* We devised new approaches to test for the convergence of worldsheet
Instanton corrections at large number of moduli.

* The SUSY AdS vacua we constructed are in the radius of convergence
of the instanton expansion.

* Our tools will be included in our CYTools package soon.



Thank you!

Questions?
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